PERENCANAAN DRAINASE MUDIAK LOLO KECAMATAN SUNGAI PAGU KABUPATEN SOLOK SELATAN

Fadilah Khania Sabri ¹⁾, Bahrul Anif²⁾, Nazwar Djali³⁾

Program Studi Teknik Sipil, Fakultas Teknik Sipil Dan Perencanna, Universitas Bunghatta,Padang

> E-mail: fadilahkhania95@gmail.com, bahrulanif@bunghatta.ac.id, nazwardjaliubh@gmail.com

PENDAHULUAN

1. Latar Belakang

Kondisi topografi di wilayah Kecamatan Sungai Pagu Kabupaten Solok Selatan untuk pengembangan berbagai kegiatan karena kondisi topografinya. namun disisi lain potensi permasalahan yang mungkin timbul adalah dalam aspek perencanaan saluran drainase. Di tahun 2019 Kabupaten Solok Selatan dilanda banjir yang akibatnya ada 3 kecamatan yang terendam banjir Koto Parik Gadang, Sungai Pagu, dan Sangir. hujan deras yang mengguyur Solok Selatan menyebabkan air sungai meluap dan kurangnya drainase yang ada, akibat dari banjir tersebut masyarakat banyak mengalami kerugian kompas, 2019. Salah satu kawasan yang rawan terhadap banjir dan genangan ada di Kecamatan Sungai Pagu Kabupaten Solok Selatan adalah Jalan Mudiak Lolo,oleh karena itu diperlukan suatu drainase yang baik agar genangan air dapat dialirkan kedalam drainase.

Tujuan penelitian: merencanakan saluran drainase di Jalan Mudiak Lolo Kecamatan Sungai Pagu Kabupaten Solok Selatan untuk mengurangi terjadinya banjir.

METODE

Peninjauan lapangan dilakukan untuk mengidentifikasi permasalah secara langsung pada tempat yang menjadi lokasi perencaan. dilakukan dengan pengumpulan data primer dan data sekunder.

Data primer yang diperoleh dari lokasi rencana studi maupun hasil survey dari masyarakat berupa hasil wawancara penduduk, dan foto lokasi banjir dilapangan. Data sekunder adalah data terukur suatu meliputi: 1.Peta topografi. 2. Peta stasiun curah hujan. 3.Data curah hujan. 4. Data tanah.

Data hidrologi telah diperoleh yang kemudian dianalisis untuk mendapatkan nilai debit banjir rencana langkah-langkah: analisis curah hujan rata-rata, analisis curah hujan rencana, analisis intensitas curah hujan, dan analisis debit rencana.kemudian melakukan analisa hidrolika dengan cara analisa dimensi saluran terbuka, perhitungan penampang dimensi segi empat, analisa air balik dan analisa dinding saluran.

HASIL DAN PEMBAHASAN

Analisis curah hujan renacana didapat dari 3 metode yaitu metode gumbel,hasper, dan wedwen adalah:

Tabel 1.hujan rencana tiga metoda

Metode	Gumbel	Hasper	Wedwen	Rata- Rata
Rn				Nata
R_2	64.805	62.309	50.918	59.344
R_5	79.729	78.693	61.552	73.325
R ₁₀	89.608	90.505	72.083	84.065
R ₂₀	99.088	102.507	82.921	94.839
R ₂₅	102.094	106.508	86.398	98.333
R ₅₀	111.356	118.891	96.929	109.059
R ₁₀₀	120.549	131.846	107.358	119.918

Intensitas Curah hujan

Intensitas curah hujan dihitung dengan menggunakan rumus Mononobe dimana adanya pengaruh waktu konsentrasi (t_c).didapat untuk periode 10 tahun adalah

$$I = \frac{R}{24} \left[\frac{24}{tc} \right]^{\frac{2}{3}}$$

$$I = \frac{84,065}{24} \left[\frac{24}{1.020} \right]^{\frac{2}{3}}$$

I = 28.76 mm/jam

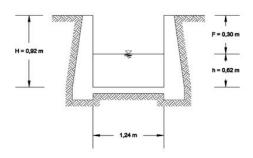
Perhitungan debit rencana menggunakan metode rasional didapat:

Q = 0,278.C. I. A

 $Q = 0.278 \cdot 0.35 \cdot 28.76 \cdot 1$

 $Q = 2,798 \text{ m}^3/\text{dt}$

Analisa dimensi saluran drainase diketahui data:


debit rencana (Q) = $2,798 \text{ m}^3/\text{dt}$

koefisien manning (n) =0.02

kemiringan (s) = 0.024

lebar saluran b = 2.h

didapat dengan cara coba – coba tinggi muka air(h)= 0.62 m dan lebar dasar saluran (b) =1.24 m. dengan freeboard diambil 0.3 m.maka didapat (H) = 0.92 m

Gambar 1. Penampang segi empat

tinggi muka air banjir 1.00 m terjadi Air Balik (*Back water*) sejauh 269.07 m dari hilir saluran Dari hasil itu dapat disimpulkan bahwa air balik (*Back water*) tidak mempengaruhi daerah tinjauan, berjarak 750 m karena jarak antara hilir saluran dengan lokasi tinjauan relatif jauh.

Perhitungan analisa didnding saluran Untuk mengetahui apakah dinding saluran drainase kuat, maka perlu di cek atau di hitung ke stabilannya terhadap kuat dukung tanah, geser, dan guling. dari hasil perhitungan didapatkan didnding saluran aman seseuai dengan kriteria perencanaan (06).

KESIMPULAN

Dari hasil perencanaan drainase Jalan Mudiak Lolo Kecamatan Sungai Pagu Kabupaten Solok Selatan dapat direncanakan drainase penampang terbuka segi empat dengan tinggi total 0,92 m dan lebar saluran 1,24 m. dengan tidak terjadinya back water terhadap saluran dan perhitungan dinding saluran aman sesuai dengan kriteria perencanaan yang ada (06)

Kata kunci : drainase, curah hujan, dimensi, analisa, data.

DAFTAR PUSTAKA

Rasyid, Muhammad. (2019). "Perencanaan Penampang Drainase Kawasan Taruko 1 Kecamatan Kuranji Kota Padang Sumatra Barat". Teknik Sipil. Universitas Bunghatta.

Iwanti. (2019). "Analisa Saluran Drainase Pada Wilayah Maransi Air Pacah Kota Padang" Teknik Sipil. Universitas Bunghatta.

Ariya. (2015). "Analisa Kapasitas Penampang Batang Mahat Di Kabupaten Lima Puluh Kota" Teknik Sipil. Universitas Bunghatta

Ashariweldi. (2015). "Analisa Banjir Akibatsedimentasi Batang Tiku". Teknik Sipil. Universitas Bunghatta.

Utama, Lusi. (2013). Hidrologi Teknik. Padang: Universitas Bunghatta.

Suripin. (2004). Sistem Drainase Perkotaan Berkelanjutan. Yogyakarta : Andi.

Chow, Ven Te (1997). Hidrolika Saluran Terbuka. Bandung : Erlangga.

Loebis, J. (1987). Banjir Rencana Untuk Bangunan Air. Jakarta : Departemen Pekerjaan Umum.