PENGARUH PENAMBAHAN SILICA FUME TERHADAP BETON SELF COMPACTING CONCRETE (SCC)

Riandika Hugo PF, Bahrul Anif, Khadavi

Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Bung Hatta Padang

Email: riandikahugo@gmail.com bahrulanif@bunghatta.ac.id khadavi@bunghatta.ac.id

PENDAHULUAN

1. Latar Belakang

Umumnya beton yang banyak digunakan dalam proses konstruksi adalah beton normal. Selain proses pembuatannya yang relatif mudah, beton normal juga dinilai lebih ekonomis. Namun, dalam pelaksanaannya tidak jarang beton normal sering mengalami kendala yang dikarenakan jarak antar tulangan yang terlalu rapat. Hal ini akan menyebabkan pemisahan antara pasta dan agregat kasar (segregasi) yang berakibat pada penurunan kualitas beton. Untuk mencapai kualitas beton yang direncanakan, beton segar harus mengisi ruang dengan cepat tapi tetap masif. Salah satu upaya yang dapat dilakukan adalah dengan membuat beton berjenis "Self Compacting Concrete (SCC)" atau beton yang dapat memadat sendiri. Beton ini mempunyai workability yang baik sehingga mampu melakukan pemampatan sendiri tanpa perlu menggunakan alat vibrator. Beton ini mampu masuk ke semua celah bekisting dengan memanfaatkan berat sendiri agregat penyusunnya. SCC mempunyai kekuatan yang tinggi namun tetap lecak dalam pelaksanaannya. Hal ini karena SCC menggunakan superplasticizer sebagai bahan tambah (admixture). Superplasticize mampu meningkatkan workability beton namun tetap menjaga agar prorositas beton tetap kecil.

2. Tujuan Analisis

Adapun tujuan tugas akhir sebagai berikut: Mengetahui pengaruh penambahan *Silica Fume* (Sika Fume) dan *Superplasticizer* (Sika Viscocrete-8045) terhadap kuat tekan Beton *Self Compacting Concrete* (SCC).

METODOLOGI PENELITIAN

Penelitian ini tentang beton **SCC** yang menggunakan bahan tambah kimia Superplasticizer dari produk PT. SIKA Group yaitu Sika Viscocrete-8045 dan silica fume juga memakai produk dari PT. SIKA GROUP yaitu Sika Fume dengan menggunakan metode Mix Desain SNI 03-2834-2000 "Tata Cara Pembuatan Beton Normal" dengan menambahkan syaratsyarat Self Compacting Concrete dari The European Guidlines for SCC. Penambahan admixture Superplasticizer bervariasi yaitu 1,6 %

dan 1,7% menggunakan Sika Viscocrete-8045P terhadap berat semen dan penambahan *silica fume* secara bervariasi digunakan adalah Sikafume produksi PT. SIKA GROUP. Ada 5 Variasi Campuran Tambahan Silica Fume yaitu 6%, 7%, 8%, 9%, 10% dari berat semen. Pengujian pada beton dilihat pada kuat tekan dari penambahan *silica fume* yang bervariasi.

HASIL DAN PEMBAHASAN

Hasil pengujian kuat tekan beton scc umur 28 hari dengan bahan tambah silika fume bervariasi berbahan dasar *calcium silikate hydrate* yang berperan terhadap penambahan kuat tekan pada beton dan *Superplasticizer* Visco-8045P berbahan *Polycarboxylate* yang berperan terhadap kuat tekan awal pada beton lebih tinggi yang artinya membuat beton itu lebih cepat memadat, menjadikan sifat beton menjadi Flowability dan mampu mengurangi pemakaian air mencapai 40% menunjukan bahwa beton telah memenuhi persyaratan beton segar SCC yang akan kita lihat pada tabel 1 di bawah ini

Tabel 1. Nilai Rata-rata Kuat Tekan

No	Zat sika	Kuat Tekan (Mpa)	
		SP 1.6 %	SP 1.7%
1	0.0%	80.83	83.63
2	6.0%	82.03	88.04
3	7.0%	84.35	91.84
4	8.0%	86.52	93.97
5	9.0%	87.80	89.24
6	10.0%	85.56	87.52

Berdasarkan tabel di atas, diketahui bahwa dengan menggunakan variasi dosis Superplasticizer 1.6% kuat tekan terus meningkat mulai dari variasi dosis Silika Fume 6% dan tertinggi di umur 28 hari dicapai pada variasi dosis Silika Fume 9% dengan kuat tekan 87.89 MPa pada variasi dosis slanjutnya terjadi penurunan. Dan pada variasi dosis Superplasticizer 1.7% kuat tekan terus meningkat mulai dari variasi dosis Silika Fume dan tertinggi di umur 28 hari di capai pada variasi dosis Silika Fume 8% dengan kuat tekan 93.97 MPa. Hasil ini menunjukan bahwa penggunaan superplasticizer 1.6% dengan silica fume sebanyak 9% adalah komposisi campuran terbaik dalam pemakaian beda halnya pada penggunaan dosis ini, penggunaan superplasticizer 1.7% komposisi terbaik di dapat pada dosis silica fume sebanyak 8%

KESIMPULAN

1. Hasil penelitian campuran beton SCC dengan tambahan *Silika Fume* yang komponen utamanya menghasilkan kekuatan untuk kuat tekan adalah gel koloid *calcium silicate hydrate* (C-S-H) bervariasi dan *Superpalsticizer* Sika Viscocrete-8045 berbahan dasar

polycarboxylate yang berperan terhadap kuat tekan awal pada beton yang tinggi membuat beton tersebut memadat lebih cepat, menjadikan sifat beton menjadi *flowability* dan dapat mengurangi pemakaian air di atas 30%, menunjukan bahwa beton telah memenuhi persyaratan SCC, Sesuai standar (*EFNARC*, 2002).

- 2. Pemakaian *Superpalsticizer* produk PT Sika yaitu Visco-8045 yang mampu mengurangi pemakaian air sebanyak 40% dari 238.75 kg/m3 menjadi 143.25 kg/m3 dengan semen yang tetap sebanyak 628.29 kg/m3 di dapatkan kuat tekan sebagai berikut:
 - a. Pada hasil optimal pemakaian Visco-8045 dosis Silika Fume 1.6% di dapat kuat tekan 87.80 MPa, (tercapai 219.5% dari desain rencana yaitu 40 MPa).
 - b. Pada hasil optimal pemakaian Visco-8045 dosis Silika Fume 1.7% di dapat kuat tekan 93.97 MPa, (tercapai 234.9% dari desain rencana yaitu 40 MPa).
- 3. pengujian ini tidak bisa mengacu pada PBI 1971 tabel 4.1.4 tentang faktor koreksi untuk umur 28 hari dikarenakan beton bukan beton normal (tanpa zat adiktif atau admixtur) dan semen yang dipakai bukan semen Ordinary Portland Semen (OPC) Tipe I dan Ordinary Portlad Semen (OPC) tipe III.

Kata kunci : Beton, Self Compacting Concrete, Admixture, Silika Fume, Superplasticizer, Kuat Tekan

DAFTAR PUSTAKA

AA Puspita, B Anif, Z Mizwar. 2019 "Pengaruh Bahan Silica Fume Terhadap Nilai Kuat Tekan Beton Mutu Tinggi", Padang; Universitas Bung Hatta.

ACI Committee 234. (1995). *Guide for Use of Silica Fume in Concrete*. Vol 92, No. 4 ACI Materials Journal.

ASTM C 1240. (1993). Standard Specifications for Silica Fume Concrete.

Brouwers, H.J.H, dan HJ Radix. (2005). *Self Compacting Concrete: Theoretical and Experimental Study*. Twente, Belanda: University Of Twente.

PdT-07-2005 Pelaksanaan Pekekerjaan Beton Untuk Jalan-Jembatan.

PT. Sika. Sika Viscocrete 8045-P *User's Manual* Product Data Sheet.

Rizki Maulana Muhammad, A BAHRUL, KHAIDIR INDRA. 2020 "Pengaruh Penggunaan Limbah Beton Sebagai Pengganti Agregat Kasar Terhadap Kuat Tekan Beton Memadat Sendiri (Self Compacting Concrete)", Padang; Universitas Bung Hatta.

RM Muhammad, A BAHRUL, K INDRA. 2020 "Pengaruh Penggunaan Limbah Beton Sebagai Pengganti Agregat Kasar Terhadap Kuat Tekan Beton Memadat Sendiri (Self Compacting Concrete)", Padang; Universitas Bung Hatta.

Silica fume Association. (2015). Silica Fume User's Manual.

SKSNI S-18-1990-03. Spesifikasi Bahan Tambahan untuk Beton.

SKSNI T-15-1991-03 Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung.

SNI 03-1974-2011 – Tentang Cara Uji Kuat Tekan Beton Dengan Benda Uji Silinder Ø10 x L20.

SNI 03-2834-2000. (2000). *Tata Cara Pembuatan Rencana Beton Normal*. Jakarta: Departemen Pekerjaan Umum.

SNI 2493 ; 2011 - Tata Cara Pembuatan dan Perawatan Benda Uji Beton di Laboratorium.

SNI 6369 ; 2008 - Tata Cara Pembuatan Kaping Untuk Benda Uji Silinder Beton,

TI Ardi, B Anif, K Khadavi. 2019 "Penelitian Self Compacting Concrete Pada Beton Normal Dengan Bahan Tambah Sika Visconcrete-1003", Padang; Universitas Bung Hatta.

W Atthaarig, K Khadavi, B Anif. 2019 "Pengaruh Penambahan Abu Tempurung Kelapa Sebagai Filler Terhadap Kuat Tekan Beton Scc", Padang; Universitas Bung Hatta.