PERENCANAAN NORMALISASI BATANG ARAU SEGMEN TENGAH (STUDI KASUS, LOKASI KENAGARIAN BARINGIN, PADANG BASI) KOTA PADANG

Rahmon Diyas Pratama¹⁾, Zahrul umar²⁾, Lusi Utama³⁾

Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Bung Hatta

E-mail: rahmondiyas20@gmail.com, zahrul_umar@yahoo.co.id, lusi_utamaindo115@yahoo.co.id

PENDAHULUAN

Batang Arau adalah nama sungai yang terdapat di provinsi Sumatera Barat. Aliran Batang Arau pada bagian muaranya membagi kawasan di kota Padang dengan bukit yang dikenal dengan nama Gunung Padang. Hulu DAS Batang Arau dimulai dari sungai Lubuk Paraku yang berada di timur laut kota Padang, dengan daerah tangkapan air seluas 2.504 hektar yang merupakan Taman Hutan Raya Dr. Muhammad Hatta, Kawasan Suaka Alam Barisan I dan Arau Hilir dan bermuara di Samudera Indonesia.

Normalisasi adalah tindakan menjadi normal (biasa), tindakan mengembalikan keadaan. Sedangkan dimaksud normalisasi sungai adalah menciptakan kondisi sungai dengan lebar dan kedalaman tertentu. Agar sungai mampu mengendalikan air sehingga tidak terjadi luapan/limpasan. Hal ini dapat dilakukan dengan beberapa cara seperti pengerukan sungai yang mengalami pendangkalan mendimensi penampang sungai agar mampu menampung debit, untuk mengurangi luapan air.

Banjir yang melanda Kota Padang, Sumatera Barat (Sumbar), tak hanya merendam permukiman warga, namun juga merusak dua jembatan, Jumat (2/11/2018). Salah satu jembatan besi bahkan hanyut terbawa arus deras banjir bandang hingga 800 meter. Usai banjir akses jalan masyarakat di Kelurahan Koto Lalang dengan Kelurahan Baringin, Kecamatan Lubuk Kilangan, terputus, Sabtu (3/11/2018). Dua jembatan yang menghubungkan kedua kelurahan ini rusak dan tidak bisa dilewati masyarakat. (*idNews.id*)

Dari permasalahan diatas penulis tertarik mengangkat masalah ini sebagai bahan pembuatan Tugas Akhir dengan Judul "Perencanaan Normalisasi Batang Arau Segmen Tengah (Studi Kasus, Lokasi Kanagarian Baringin, Padang Basi) Kota Padang".

METODE

Data yang digunakan dalam perhitungan curah hujan rata-rata merupakan data curah hujan maksimum dari setiap hujan harian. Metode yang dipakai penulis adalah metode Polygon Thiessen karena menggunakan 3 stasiun. Analisa hujan rencana dapat di perhitungkan untuk periode ulang 5 tahun, 10 tahun, 25 tahun, 50 tahun, 100 tahun.

Dalam perhitungan analisa curah hujan rencana dengan periode ulang tertentu ada beberapa metode yang digunakan, adapun metode yang digunakan antara lain :

- 1. Metode Distribusi Normal.
- 2. Metode Distribusi Gumbel.
- 3. Metode Distribusi Log Normal.
- 4. Metode Distribusi Log Pearson Tipe III.

Adapun cara yang dapat dilakukan untuk menguji apakah jenis distribusi yang dipilih sesuai dengan data yang ada, yaitu uji Chi Kuadrat.

Dalam penentuan debit banjir rencana dapat digunakan beberapa metode diantaranya adalah metode hasper, metode nakayasu dan metode mononobe. Metode-metode ini digunakan berdasarkan asumsi bahwa untuk luasan DAS sampai 100 km² maka dapat digunakan metode ini dan analisa debit banjir rencana lebih mendekati ketiga metode tersebut.

HASIL DAN PEMBAHASAN

Hasil perhitungan curah hujan rencana

No.	Kejadian			Hujan Harian Maksimum (mm)			Hujan Harian	Hujan Harian
		Bulan	Tanggal	Stasiun	Stasiun	Stasiun Bungus	Rata-	Harian Maksimum
	Tahun				Ladang Padi		Rata	Rata-Rata
			88	0.05	0.91	0.03	(mm)	(mm)
	2009	9	19	196	69.5	134	77.07	133.97
1		1	6	40.4	145	-	133.97	
		6	29	10.8	45	240	48.69	
	2010	10	13	180	-	160	13.80	99.70
2		2	24	10.2	109	-	99.70	
		10	13	180	-	160	13.80	
	2011	7	12	170	18	140	29.08	109.77
3		6	22	47.8	118	-	109.77	
		9	21	53.8	18	155	23.72	
	2012	9	13	140	-	-	7.00	108.21
4		7	24	-	117	58	108.21	
		2	8	32.8	19	156	23.61	
	2013	11	17	191	-	-	9.55	123.17
5		12	3	120	125	114	123.17	
		10	19	2.4	26	160	28.58	
	2014	12	1	139	29	50	34.84	116.46
6		10	30	8	125	77	116.46	
		11	23	54	16	141	21.49	
7	2015	11	24	231	1	93	15.25	
		11	3	20	76	6	70.34	70.34
		5	23	-	-	150	4.50]
	2016	10	17	1015	-	-	50.75	110.83
8		10	7	-	118	115	110.83	
		8	22	21.5	-	151	5.61	
9	2017	10	10	154	22	26	28.50	113.86
		20	9	56	122	1.4	113.86	
		2	23	10	9	131	12.62	
	2018	11	3	146	27	11	32.20	177.61
10		12	10	38	192	33	177.61	
		11	2	84	104	136	102.92	1

Rekapitulasi Uji Chi-Kuadrat Nilai X² dan X²cr

Distribusi Probabilitas	χ2 terhitung	2cr	Keterangan
Normal	1.50	5.991	Diterima
Log Normal	3.50	5.991	Diterima
Gumbel	2.50	5.991	Diterima
Log Pearson Type III	12.77	5.991	Tidak Diterima

Rekapitulasi debit banjir rencana

Periode	Debit Rencana Berdasarkan Data Hujan				
Ulang	Nakayasu	Mononobe	Hasper		
(Tahun)	(m^3/dt)	(m³/dt)	(m³/dt)		
2	68.93	187.481	104.628		
5	82.45	224.261	125.154		
10	89.54	243.526	135.905		
25	95.33	259.289	144.702		
50	101.93	277.241	154.720		

Perhitungan Dimensi Sungai:

Penampang desain berbentuk trapesium majemuk dengan talud 1:1 Direncanakan:

$$Q = 300 \text{ m}^3/\text{dt}$$
 $b = 44 \text{ m}$
 $h = 3.41 \text{ m}$ $I = 0.093$

I = 0.093

Dimensi d50 = 0.35 mm

Rumus menghitung kedalaman gerusan menurut Laciv

$$\begin{split} R &= 0.47 \, \left(\frac{Q}{f}\right)^{1/3} & f = faktor \ lumpur \ laciy \\ f &= 1,76 \ Dm^{0.5} & R = Kedalaman \ gerusan \ dibaw \end{split}$$

R = Kedalaman gerusan dibawah permukaan air sungai (m)

Gerusan $f = 1,76 \times 0,35^{0,5}$

Gerusan
$$f = 1,76 \times 0,35^{0.5}$$
 $f = 1,04$
 $R = 0,47 \left(\frac{Q}{f}\right)^{1/3}$ $R = 0,47 \left(\frac{505}{1,04}\right)^{1/3}$
 $R = 3.694 \text{ m}$

Tinggi Muka air (h) = 3,41 m

Dalam Gerusan =
$$R - h$$

= 3,694 - 3,41
= 0,284 m 0,30 m

Mencari tinggi h:

Didapat tinggi h= 3,41 m

A =
$$(b + m \cdot h) h$$

= $(44 + 1 \times 3,41) \times 3,41$
= $68,25 \text{ m}^2$

P =
$$b + 2\sqrt{m^2 + 1} \times h$$

= $44 + 2\sqrt{1^2 + 1} \times 3,41$
= 48.24 m

$$= 48,24 \text{ m}$$

$$R = A/P$$

$$= 1.41$$

$$V = 1/n \times R^{2/3} \times I^{1/2}$$

= 4,258 m/detik

$$Q_{desain} = A . V$$

$$= 68,25 \times 4,258$$

 $= 290,64 \text{ m}^3/\text{detik}$

Tinggi tanggul jagaan (freeboard) menurut tabel 2,8 adalah 0,8 m 1 m (200 - < 500)

Tinggi keseluruhan tanggul (H) =
$$h + w$$

= 3,41 + 1
= 4,41 m

KESIMPULAN

Batang Arau memiliki debit yang besar, sebesar 264,12 m³/dtk. Sehingga membutuhkan penampang yang lebih besar agar mampu menampung debit air yang akan dialirkan.

Penanganan di badan sungai dengan perencanaan pembuatan tanggul di sisi kiri-kanan sungai yang berfungsi selain untuk menambah kapasitas sungai juga mencegah terjadinya gerusan pada tebing sungai. Dengan Perhitungan dimensi sungai rencana yaitu, lebar = 44m, tinggi = 4,41 m (termasuk freeboard 1 m). Penampang berbentuk trapesium majemuk dengan talud 1:1

DAFTAR PUSTAKA

Balai Wilayah Sungai Sumatera V. Data curah Hujan Tahun 2006 - 2016.

J. Kodoatie, Robert. 2013. Rekavasa dan Manajemen Banjir Kota. Yogyakarta : ANDI

Soemarto, C. D. 1999. Hidrologi Teknik Edisi Kedua. Jakarta : Erlangga.

Soewarno.1995. "Hidrologi : Aplikasi Metode Statistik untuk Analisa Data Jilid 1". Bandung: Nova.

Sosrodarsono, & Takeda, 1983. Suyono "Hidrologi Untuk Pengairan. Jakarta: Pradnya Paramita.

Sri Harto Br. 1993. Analisis Hidrologi. Jakarta: Gramedia Pustaka Utama.

Suripin, M.Eng, Dr. Ir., 2004 "Sistem Drainase Perkotaan yang Berkelanjutan". Yogjakarta: ANDI.

Subramanya, K. "Flow in Open Chanel", second edition. Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.

Triatrnojo, B., 2008, Hidrologi Terapan. Beta Offset. Yogyakarta

Utama, Lusi. 2013. Hidrologi Teknik. Padang: Bung Hatta University Press.

Ven Te Chow, Ph. D. 1997. Hidrolika Saluran Terbuka. Jakarta: Erlangga