Studi Laju Korosi untuk Paduan Magnesium AZ31B dalam Larutan Phosphate Buffer Saline
Keywords:
corrosion rate, magnesium, phosphate buffered saline, weight loss, immersion test.Abstract
Corrosion is a phenomenon of decreasing the quality of a metal material, the principle of corrosion is used in the field of research on biodegradable materials for applications to replace conventional stainless steel-based bone bolts to reduce the traumatic impact due to the use of stainless steel-based bone bolts. Magnesium has the potential for degradable bone bolt material, magnesium alloy AZ31B was used as an experimental material in this study because it contains 97% magnesium and the rest is a mixture of zinc, aluminum, and manganese. This test uses a solution of phosphate buffered saline as a substitute for human body fluids. By referring to the ASTM G31-72 standard, this research applies the corrosion rate analysis approach with the weight loss method, and the immersion test as the research method. Magnesium is immersed in 200 ml of PBS solution at a constant temperature of 34oC in an incubator. In calculating the corrosion rate in this study using a constant of 8.76 × 104 mm/year and a density of 1.77 gr/cm3 as a constant. In this study, the average corrosion rate was 0.5532 mmpy for a duration of 144 hours of immersion, 0.54 mmpy for a duration of 168 hours of immersion, and 0.6536 mmpy for a duration of 192 hours of immersion. Thus, this study shows the ability of magnesium alloy-based materials as a material capable of being degraded which has the potential to be a substitute for bone bolt material.References
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, KU, Willumeit, R., & Feyerabend, F. (2008). Biomaterial yang dapat terdegradasi berdasarkan korosi magnesium. Pendapat saat ini dalam keadaan padat dan ilmu material, 12(5-6), 63-72.
Zhao, J., Zhang, Z., Wang, S., Sun, X., Zhang, X., Chen, J., ... & Jiang, X. (2009). Perancah fibroin sutra berlapis apatit untuk menyembuhkan cacat batas mandibula pada gigi taring. Tulang, 45(3), 517-527.
Azima, F., & Mesin, JT (2022). Analisa Laju Korosi PAduan Seng (Zn) Untuk Aplikasi Terserap Tubuh Analisis Laju Korosi Dari Zinc (Zn) Alloy Absorbable Implant. Februari, 4(1), 137-143. http://vomek.ppj.unp.ac.id
Septe, E., Naumar, A., & Mohammed, AH (2014). Tinjauan model penilaian korosi dan parameter pipa distribusi air minum. Jurnal Teknologi, 69(2), 91-95.
Dalimunthe IS, (2004). Kimia Dari Inhibitor Korosi. Universitas Sumatera Utara, 1–8.
Septe, E., & Jalinus, N. (2018). Sebuah Novel Metode Penilaian Korosi Internal pada Pipa Distribusi Air Minum. Dalam MATEC Web of Conferences (Vol. 248, p. 05008). Ilmu EDP
Hutauruk, FY, Pembimbing, D., Fitri, SP, Teknik, D., Perkapalan, S., & Kelautan, FT (2017). Analisa laju korosi pada pipa baja karbon dan pipa galvanis dengan metode elektrokimia.
ASTM G31 – 72. (2004). ASTM G31: Praktik Standar untuk Pengujian Korosi Perendaman Laboratorium Logam. ASTM Internasional, I (Disetujui Kembali), 5–7.
Gao, Zhichao & Wang, Mei & Shen, Baojie & Chu, Xiaodong & Ruan, Di. (2021). Pengobatan fraktur leher femur tipe III Pauwels dengan sekrup pendukung leher femoralis medial: studi biomekanik dan klinis. Laporan Ilmiah. 11. 10.1038/s41598-021-01010-1.
Latif, MN (2020). Simulasi Dan Analisis Implan Plat Kompresi Dinamis Kontak Terbatas Tulang Manusia Dengan Metode Analisis Elemen Hingga (Disertasi Doktor Universitas Negeri Padang).
Hermanto, A., Burhanudin, Y., & Sukmana, I. (2016). Peluang dan tantangan aplikasi baut tulang mampu terdegradasi berbasis logam magnesium. Dinamika Teknik Mesin, 6(2). https://doi.org/10.29303/d.v6i2.11
Mulyaningsih, N. (2017). Pengaruh Cairan Tubuh Manusia Terhadap Korosi. Jurnal Wahana Ilmuwan, 3(1), 153–160.
Kokubo, T., & Takadama, H. (2006). Seberapa berguna SBF dalam memprediksi bioaktivitas tulang in vivo Biomaterials, 27(15), 2907–2915.